Topics Surrounding the Anabelian Geometry of Hyperbolic Curves
نویسندگان
چکیده
§0. Introduction §1. The Tate Conjecture as a Sort of Grothendieck Conjecture §1.1. The Tate Conjecture for non-CM Elliptic Curves §1.2. Some Pro-p Group Theory §2. Hyperbolic Curves as their own “Anabelian Albanese Varieties” §2.1. A Corollary of the Main Theorem of [Mzk2] §2.2. A Partial Generalization to Finite Characteristic §3. Discrete Real Anabelian Geometry §3.1. Real Complex Manifolds §3.2. Fixed Points of Anti-Holomorphic Involutions §3.3. Hyperbolic Curves and their Moduli §3.4. Abelian Varieties and their Moduli §3.5. Profinite Real Anabelian Geometry §4. Complements to the p-adic Theory §4.1. Good Chern Classes §4.2. The Group-Theoreticity of a Certain Chern Class §4.3. A Generalization of the Main Result of [Mzk2]
منابع مشابه
Topics in Absolute Anabelian Geometry I: Generalities
This paper forms the first part of a three-part series in which we treat various topics in absolute anabelian geometry from the point of view of developing abstract algorithms, or “software”, that may be applied to abstract profinite groups that “just happen” to arise as [quotients of] étale fundamental groups from algebraic geometry. In the present paper, after studying various abstract combin...
متن کاملTopics in Absolute Anabelian Geometry Ii: Decomposition Groups and Endomorphisms
The present paper, which forms the second part of a three-part series in which we study absolute anabelian geometry from an algorithmic point of view, focuses on the study of the closely related notions of decomposition groups and endomorphisms in this anabelian context. We begin by studying an abstract combinatorial analogue of the algebro-geometric notion of a stable polycurve [i.e., a “succe...
متن کاملTopics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves Ii: Tripods and Combinatorial Cuspidalization
Let Σ be a subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-Σ fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of Σ are invertible. The starting point of the theory of the present paper is a...
متن کاملGlobal Solvably Closed Anabelian Geometry
In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical ...
متن کاملOn the Combinatorial Anabelian Geometry of Nodally Nondegenerate Outer Representations
Let Σ be a nonempty set of prime numbers. In the present paper, we continue the study, initiated in a previous paper by the second author, of the combinatorial anabelian geometry of semi-graphs of anabelioids of pro-Σ PSC-type, i.e., roughly speaking, semi-graphs of anabelioids associated to pointed stable curves. Our first main result is a partial generalization of one of the main combinatoria...
متن کامل